

What is transmute-core?

transmute-core removes the boilerplate of writing well-documented, easy to use APIs for Python web services, and easily integrates with any web framework. It takes a function
that looks like this:

from transmute_core import annotate
from transmute_core.frameworks.flask import route

@route(app, paths='/multiply', tags=['math'])
def multiply(left: int, right: int) -> int:
 return left * right

Into an API /multiply that:

	validates and serializes objects into the proper object

	has an autodocumentation page for all APIs generated this way, via swagger [http://swagger.io/].

The example above is for flask, but transmute-core has integrations for:

	aiohttp [https://github.com/toumorokoshi/aiohttp-transmute]

	flask [https://github.com/toumorokoshi/flask-transmute]

	tornado [http://www.tornadoweb.org/en/stable/]

To learn more, see the Getting Started.

License

transmute-core is released under the MIT license [https://github.com/toumorokoshi/transmute-core/blob/master/LICENSE].

However, transmute-core bundles swagger-ui [https://github.com/swagger-api/swagger-ui] with it, which is released under
the Apache2 license.

User’s Guide

	Getting Started
	1. Authoring a Function To Be Transmuted

	2. Annotating a Function

	3. Adding Swagger Documentation to the App

	4. What’s Next?

	Serialization and Validation
	Python Primitives

	Typing Module

	Attrs

	Schematics

	Details

	Performance

	Customization

	Functions and Annotations
	Argument Inference

	use transmute_core.describe to customize behaviour

	Exceptions

	Additional Examples

	Frameworks Supported
	aiohttp

	flask

	Advanced Usage
	TransmuteContext

	Response

	Creating a framework-specific library

API Reference

	API Reference
	TransmuteContext

	Decorators

	Object Serialization

	ContentType Serialization

	Swagger

	Shape

	TransmuteFunction

Changelog:

	Changelog

Getting Started

This guide explains how to get the most out of transmute. These instructions have been written with flask in mind, but they apply to most frameworks with some minor tweaks.

For details that pertain to specifics framework, see framework support.

From a high level, the steps are:

	authoring a function that you would like to be an API

	annotating the function with data needed to describe how it should be exposed (method, path)

	adding a route that exposes the swagger documentation page, displaying all transmute routes created

1. Authoring a Function To Be Transmuted

transmute-core is very flexible with regards to what sort of functions can be converted into APIs. The more best practices followed, the better.

Here’s an ideal example:

def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

transmute will extract relevant metadata about the function and use that to define certain attributes when creating the API. In the example above:

	multiply will allow two arguments: left and right, which are both integers

	the api will return back and integer

	the description of the api in documentation is “multiply two values together”

More complex object can be used. See [serialization](serialization.md).

Annotating Types in Python 2

The example above uses type annotations, which are only present in Python 3.4 and above. If you are using an older version, transmute-core provides the “annotate” decorator to provide the same data.

from transmute_core import annotate

@annotate({"left": int, "right": int, "return": int})
def multiply(left, right):
 """
 multiply two values together.
 """
 return left * right

2. Annotating a Function

This provides some of the data, but there is some missing information to fully define an API:

	the route that the API should be mounted to

	the method(s) that the API should respond to

	additional configuration, like where parameters should be found.

We can add that information with the describe function from transmute_core:

from transmute_core import annotate, describe

@describe(paths='/multiply', methods=["POST"])
def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

This specifies:

	the api should be mounted to the path /multiply

	multiply will response to the POST method

	since the method is POST, all arguments should be passed into the body

To attach the result to a flask application, transmute_core.frameworks.flask provides a route() function.

from transmute_core.frameworks.flask import route
from flask import Flask

app = Flask(__name__)

@route(app)
@describe(paths='/multiply', methods=["POST"])
def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

As a shorthand, you can also pass configuration parameters into route as you would describe:

from transmute_core.frameworks.flask import route
from flask import Flask

app = Flask(__name__)

@route(app, paths='/multiply', methods=["POST"])
def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

if __name__ == "__main__":
 app.run(debug=True)

At this point, you can start the server, and you can send it requests! Try it out:

$ curl http://localhost:8000/multiply --data='{"left": 10, "right": 20}'

But what about an easy way to view what APIs are available?

3. Adding Swagger Documentation to the App

As part of the route creation and mounting process, transmute will also add metadata that’s easily discoverable.
That metadata can be exposed as a swagger json payload. In addition, transmute-core bundles the swagger UI so you can
view it easily and as a part of your application.

This is wrapped up as a single convenience method, provided per framework. For flask, it’s transmute_core.frameworks.add_swagger:

from transmute_core.frameworks.flask import add_swagger

note: this must be executed only after all APIs are mounted.
add_swagger(app, "/swagger.json", "/api/")

This mounts a the swagger json payload to /swagger.json, and provides a UI to view that at /api/.

At the end of the day, you can get a well documented API, and provide documentation, with roughly 4 lines from transmute_core.

from transmute_core.frameworks.flask import route, add_swagger
from flask import Flask

app = Flask(__name__)

@route(app, paths='/multiply', methods=["POST"])
def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

add_swagger(app, "/swagger.json", "/api/")

if __name__ == "__main__":
app.run(debug=True)

Congrats! You have an application up.

4. What’s Next?

You now have everything you need to get started with transmute! If you’re
interested in more complex objects in your apis, take a look at Serialization and Validation.

If you’re looking for more complex use cases for the APIs such as specifying
how parameters should be passed in, check out Functions and Annotations.

Serialization and Validation

As part of the API construction, tranmsute-core handles validating the incoming payload to match a schema, and serialization of the json or yaml payloads into native Python types.

transmute does not provide it’s own schema definition or validation system. Instead, it hooks into several existing options, extracting json schemas and relying on their validation mechanism.

These types are matches to arguments using python type annotations, or the @transmure_core.annotate decorator.

At a high level, the following are supported:

	python primitive types

	attrs [http://www.attrs.org/en/stable/] objects that use type annotations or have a type argument to attr.ib.

	types denoted using the typing [https://docs.python.org/3/library/typing.html] module (installed as a separate package for python versions older than 3.5)

	schematics [http://schematics.readthedocs.org/en/latest/] models and types.

The following discusses the types in detail.

Python Primitives

The following primitives can be used directly:

	bool

	float

	int

	str

	decimal

	datetime

Typing Module

Anything from the typing module is supported.

Attrs

Attrs provides a way to define types per attr.ib, which can be parsed
by transmute. subtypes can be a combination of attrs objects, or the typing module. E.g. to define a list of attrs objects, you can use typing.List[MyAttrsClass].

Schematics

Both schematics models, and schematics types are supported.

(note: benchmarking has shows schematics to be very imperformant. See performance).

Details

Query Parameter Array Arguments as Comma-separated List

The intention is to ensure that serialization and deserialization of types matches
that of openapi [https://www.openapis.org/], to ensure that the UI provided is usable.

This forces behaviors such as multiple arguments being consumed as a comma-separated argument
per query parameter, rather than just as multiple query parameter with the same name.

Performance

Among all of the components within transmute-core, the serialization and validation component has the most overhead (the rest are negligible relative to most application’s business logic). As a result, the choice of object to use will have a huge impact on performance.

attrs is the most performant, with a huge con around error messages (a missing argument return back a wrong number of arguments passed into __init__).

schematics has great error messages, but is roughly 30x slower than attrs.

Customization

transmute-core can support additional object types, by modifying the global TransmuteContext object.

Both of these components are customizable, either through passing a new
TransmuteContext object, or modifying the default instance.

To learn more about customizing these serializers, please see the API reference
for TransmuteContext, ObjectSerializer, and ContentTypeSerializer.

Functions and Annotations

transmute-core infers a lot of data from the function metadata, but it’s often necessary to express more complex scenarios.

This page discusses some details.

Argument Inference

The convention in transmute is to have the method dictate the source of the
argument:

	GET uses query parameters

	all other methods extract parameters from the body

This behaviour can be overridden with transmute_core.describe.

use transmute_core.describe to customize behaviour

Not every aspect of an api can be extracted from the function
signature: often additional metadata is required. Transmute provides the “describe” decorator
to specify those attributes.

import transmute_core # these are usually also imparted into the
top level module of the transmute

@transmute_core.describe(
 methods=["PUT", "POST"], # the methods that the function is for
 # the source of the arguments are usually inferred from the method type, but can
 # be specified explicitly
 query_parameters=["blockRequest"],
 body_parameters=["name"]
 header_parameters=["authtoken"]
 path_parameters=["username"],
 parameter_descriptions={
 "blockRequest": "if true, the request will be blocked.",
 "name": "the name of the db record to insert."
 }
)
def create_record(name: str, blockRequest: bool, authtoken: str, username: str) -> bool:
 if block_request:
 db.insert_record(name)
 else:
 db.async_insert_record(name)
 return True

Exceptions

By default, transmute functions only catch exceptions which extend
transmute_core.APIException. When caught, the response is an http response with a non-200 status code. (400 by default):

from transmute_core import APIException

def my_api() -> int:
 if not retrieve_from_database():
 raise APIException(code=404)

Many transmute frameworks allow the catching of additional
exceptions, and converting them to an error response. See the framework specific guides for more details.

Additional Examples

Optional Values

transmute libraries support optional values by providing them as keyword arguments:

count and page will be optional with default values,
but query will be required.
def add(count: int=100, page: int=0, query: str) -> List[str]:
 return db.query(query=query, page=page, count=count)

Custom Response Code

In the case where it desirable to override the default response code, the
response_code parameter can be used:

@describe(success_code=201)
def create() -> bool:
 return True

Use a single schema for the body parameter

It’s often desired to represent the body parameter as a single
argument. That can be done using a string for body_parameters describe:

@describe(body_parameters="body", methods="POST"):
def submit_data(body: int) -> bool:
 return True

Multiple Response Types

To allow multiple response types, there is a combination of types that
can be used:

from transmute_core import Response

@describe(paths="/api/v1/create_if_authorized/",
 response_types={
 401: {"type": str, "description": "unauthorized"},
 201: {"type": bool}
 })
@annotate({"username": str})
def create_if_authorized(username):
 if username != "im the boss":
 return Response("this is unauthorized!", 401)
 else:
 return Response(True, 201)

note that adding these will remove the documentation and type honoring
for the default success result: it is assumed you will document all non-400 responses in the response_types dict yourself.

Headers in a Response

Headers within a response also require defining a custom response type:

from transmute_core import Response

@describe(paths="/api/v1/create_if_authorized/",
 response_types={
 200: {"type": str, "description": "success",
 "headers": {
 "location": {
 "description": "url to the location",
 "type": str
 }
 }
 },
 })
def return_url():
 return Response("success!", headers={
 "location": "http://foo"
 })

Frameworks Supported

	aiohttp

	flask

aiohttp

Concise Example

from aiohttp import web
from transmute_core.frameworks.aiohttp import (
 describe, add_swagger, route
)

@describe(paths="/multiply")
async def multiply(request, left: int, right: int) -> int:
 return left * right

app = web.Application()
route(app, multiply)
this should be at the end, to ensure all routes are considered when
constructing the handler.
add_swagger(app, "/swagger.json", "/swagger")

flask

Gotchas to Note

Flask normally using arrow quotes (<>) to specify variables in the path.
Transmute-core uses the curly brackets ({}) to define path routes instead:

@route(app, paths='/{foo}')
def foo_path(foo: str) -> int:
 return 1

Concise Example

app = Flask(__name__)

@route(app, paths='/multiply', methods=["POST"])
def multiply(left: int, right: int) -> int:
 """
 multiply two values together.
 """
 return left * right

add_swagger(app, "/swagger.json", "/api/")

if __name__ == "__main__":
 app.run(debug=True)

Advanced Usage

	TransmuteContext

	Response
	Response Shape

	Creating a framework-specific library
	Full framework in 100 statements or less

	Overview

	Simple Example

TransmuteContext

To enable rapidly generating apis, transmute-core has embedded several
defaults and decisions about technology choices (such as Schematics for schema validation).

The TransmuteContext allows customizing this behaviour. Transmute
frameworks should allow one to provide and specify their own context by passing it as a keyword argument
during a function call:

from flask_transmute import add_route

add_route(app, fn, context=my_custom_context)

It is also possible to modify transmute_core.default_context: this is
the context that is referenced by all transmute functions by default.

Response

Response Shape

The response shape describes what sort of object is returned back by the HTTP
response in cases of success.

Simple Shape

As of transmute-core 0.4.0, the default response shape is simply the
object itself, serialized to the primitive content type. e.g.

from transmute_core import annotate
from schematics.models import Model
from schematics.types import StringType, IntType

class MyModel(Model):
 foo = StringType()
 bar = IntType()

@annotate("return": MyModel)
def return_mymodel():
 return MyModel({
 "foo": "foo",
 "bar": 3
 })

Would return the response

{
 "foo": "foo",
 "bar": 3
}

Complex Shape

Another common return shape is a nested object, contained inside a layer
with details about the response:

{
 "code": 200,
 "success": true,
 "result": {
 "foo": "foo",
 "bar": 3
 }
}

This can be enabled by modifying the default context, or passing a
custom one into your function:

from transmute_core import (
 default_context, ResponseShapeComplex,
 TransmuteContext
)

modifying the global context, which should be done
before any transmute functions are called.
default_context.response_shape = ResponseShapeComplex

passing in a custom context
context = TransmuteContext(response_shape=ResponseShapeComplex)

transmute_route(app, fn, context=context)

Custom Shapes

Any class or object which implements transmute_core.response_shape.ResponseShape
can be used as an argument to response_shape.

Creating a framework-specific library

Full framework in 100 statements or less

The reuse achieved in transmute-core has allowed the
framework-specific libraries to be extremely thin: Initial
integrations of Flask and aiohttp were achieved in less than 100
statements of python code.

If you find yourself writing a lot of code to integrate with
transmute-core, consider sending an issue: there may be more
functionality that can be contributed to the core to enable a thinner
layer.

Overview

A transmute library should provide at a minimum the following functionality:

	a way to convert a transmute_function to a handler for your framework of choice.

	a way to register a transmute function to the application object

	a way to generate a swagger.json from an application object

See transmute_core.frameworks for examples

Simple Example

Here is a minimal implementation for Flask [http://flask.pocoo.org/], clocking in at
just under 200 lines including comments and formatting. (just under 100 without)

"""
An example integration with flask.
"""
import json
import sys
import transmute_core
import attr
from transmute_core import (
 describe, annotate,
 default_context,
 generate_swagger_html,
 get_swagger_static_root,
 ParamExtractor,
 SwaggerSpec,
 TransmuteFunction,
 NoArgument
)
from flask import Blueprint, Flask, Response, request
from schematics.models import Model
from schematics.types import StringType
from functools import wraps

SWAGGER_ATTR_NAME = "_tranmute_swagger"
STATIC_PATH = "/_swagger/static"

def transmute_route(app, fn, context=default_context):
 """
 this is the main interface to transmute. It will handle
 adding converting the python function into the a flask-compatible route,
 and adding it to the application.
 """
 transmute_func = TransmuteFunction(fn)
 routes, handler = create_routes_and_handler(transmute_func, context)
 for r in routes:
 """
 the route being attached is a great place to start building up a
 swagger spec. the SwaggerSpec object handles creating the
 swagger spec from transmute routes for you.

 almost all web frameworks provide some app-specific context
 that one can add values to. It's recommended to attach
 and retrieve the swagger spec from there.
 """
 if not hasattr(app, SWAGGER_ATTR_NAME):
 setattr(app, SWAGGER_ATTR_NAME, SwaggerSpec())
 swagger_obj = getattr(app, SWAGGER_ATTR_NAME)
 swagger_obj.add_func(transmute_func, context)
 app.route(r, methods=transmute_func.methods)(handler)

def create_routes_and_handler(transmute_func, context):
 """
 return back a handler that is the api generated
 from the transmute_func, and a list of routes
 it should be mounted to.
 """
 @wraps(transmute_func.raw_func)
 def handler():
 exc, result = None, None
 try:
 args, kwargs = ParamExtractorFlask().extract_params(
 context, transmute_func, request.content_type
)
 result = transmute_func(*args, **kwargs)
 except Exception as e:
 exc = e
 """
 attaching the traceack is done for you in Python 3, but
 in Python 2 the __traceback__ must be
 attached to the object manually.
 """
 exc.__traceback__ = sys.exc_info()[2]
 """
 transmute_func.process_result handles converting
 the response from the function into the response body,
 the status code that should be returned, and the
 response content-type.
 """
 response = transmute_func.process_result(
 context, result, exc, request.content_type
)
 return Response(
 response["body"],
 status=response["code"],
 mimetype=response["content-type"],
 headers=response["headers"]
)
 return (
 _convert_paths_to_flask(transmute_func.paths),
 handler
)

def _convert_paths_to_flask(transmute_paths):
 """
 convert transmute-core's path syntax (which uses {var} as the
 variable wildcard) into flask's <var>.
 """
 paths = []
 for p in transmute_paths:
 paths.append(p.replace("{", "<").replace("}", ">"))
 return paths

class ParamExtractorFlask(ParamExtractor):
 """
 The code that converts http parameters into function signature
 arguments is complex, so the abstract class ParamExtractor is
 provided as a convenience.

 override the methods to complete the class.
 """

 def __init__(self, *args, **kwargs):
 """
 in the case of flask, this is blank. But it's common
 to pass request-specific variables in the ParamExtractor,
 to be used in the methods.
 """
 super(ParamExtractorFlask, self).__init__(*args, **kwargs)

 def _get_framework_args(self):
 """
 this method should return back a dictionary of the values that
 are normally passed into the handler (e.g. the "request" object
 in aiohttp).

 in the case of flask, this is blank.
 """
 return {}

 @property
 def body(self):
 return request.get_data()

 @staticmethod
 def _query_argument(key, is_list):
 if key not in request.args:
 return NoArgument
 if is_list:
 return request.args.getlist(key)
 else:
 return request.args[key]

 @staticmethod
 def _header_argument(key):
 return request.headers.get(key, NoArgument)

 @staticmethod
 def _path_argument(key):
 return request.match_info.get(key, NoArgument)

def add_swagger(app, json_route, html_route, **kwargs):
 """
 add a swagger html page, and a swagger.json generated
 from the routes added to the app.
 """
 spec = getattr(app, SWAGGER_ATTR_NAME)
 if spec:
 spec = spec.swagger_definition(**kwargs)
 else:
 spec = {}
 encoded_spec = json.dumps(spec).encode("UTF-8")

 @app.route(json_route)
 def swagger():
 return Response(
 encoded_spec,
 # we allow CORS, so this can be requested at swagger.io
 headers={"Access-Control-Allow-Origin": "*"},
 content_type="application/json",
)

 # add the statics
 static_root = get_swagger_static_root()
 swagger_body = generate_swagger_html(
 STATIC_PATH, json_route
).encode("utf-8")

 @app.route(html_route)
 def swagger_ui():
 return Response(swagger_body, content_type="text/html")

 # the blueprint work is the easiest way to integrate a static
 # directory into flask.
 blueprint = Blueprint('swagger', __name__, static_url_path=STATIC_PATH,
 static_folder=static_root)
 app.register_blueprint(blueprint)

example usage.

@describe(paths="/api/v1/multiply/{document_id}",
 header_parameters=["header"],
 body_parameters="foo")
@annotate({
 "left": int, "right": int, "header": int,
 "foo": str, "return": int, "document_id": str
})
def multiply(left, right, foo, document_id, header=0):
 return left * right

@describe(paths="/api/v1/multiply_body", body_parameters="body")
@annotate({"body": int})
def multiply_body(body):
 return left * right

@describe(paths="/api/v1/test")
@annotate({"vals": [int], "return": [int]})
def foo(vals):
 return vals

class SchematicsBody(Model):
 name = StringType(max_length=5)

@describe(paths="/api/v1/schematics",
 methods=["POST"],
 body_parameters="body")
@annotate({"body": SchematicsBody})
def schematics_example(body):
 return None

@describe(paths="/api/v1/header",
 response_types={
 200: {"type": str, "description": "success",
 "headers": {
 "location": {
 "description": "url to the location",
 "type": str
 }
 }
 },
 })
def header():
 return transmute_core.Response(
 "foo", headers={"x-nothing": "value"}
)

@attr.s
class AttrsExample(object):
 foo = attr.ib(type=str)

@describe(paths="/api/v1/attrs")
@annotate({"return": AttrsExample})
def attrs():
 return AttrsExample(foo="bar")

app = Flask(__name__)
app = Flask(__name__)
transmute_route(app, attrs)
transmute_route(app, multiply)
transmute_route(app, multiply_body)
transmute_route(app, schematics_example)
transmute_route(app, foo)
transmute_route(app, header)
add_swagger(app, "/api/swagger.json", "/api/")

if __name__ == "__main__":
 app.run(debug=True)

API Reference

TransmuteContext

	
class transmute_core.context.TransmuteContext(serializers=None, contenttype_serializers=None, response_shape=None)

	TransmuteContext contains all of the configuration points for a
framework based off of transmute.

It is useful for customizing default behaviour in Transmute, such
as serialization of additional content types, or using different
serializers for objects to and from basic data times.

Decorators

	
transmute_core.decorators.annotate(annotations)

	in python2, native annotions on parameters do not exist:

def foo(a : str, b: int) -> bool:
 ...

this provides a way to provide attribute annotations:

@annotate({"a": str, "b": int, "return": bool})
def foo(a, b):
 ...

	
transmute_core.decorators.describe(**kwargs)

	describe is a decorator to customize the rest API
that transmute generates, such as choosing
certain arguments to be query parameters or
body parameters, or a different method.

	Parameters

	
	paths (list(str)) – the path(s) for the handler to represent (using swagger’s syntax for a path)

	methods (list(str)) – the methods this function should respond to. if non is set, transmute defaults to a GET.

	query_parameters (list(str)) – the names of arguments that
should be query parameters. By default, all arguments are query_or path parameters for a GET request.

	body_parameters (List[str] or str) – the names of arguments that should be body parameters.
By default, all arguments are either body or path parameters for a non-GET request.

in the case of a single string, the whole body is validated against a single object.

	header_parameters (list(str)) – the arguments that should be passed into the header.

	path_parameters (list(str)) – the arguments that are specified by the path. By default, arguments
that are found in the path are used first before the query_parameters and body_parameters.

	parameter_descriptions (list(str)) – descriptions for each parameter, keyed by attribute name.
this will appear in the swagger documentation.

Object Serialization

	
class transmute_core.object_serializers.ObjectSerializer

	The object serializer is responsible for converting objects to and
from basic data types. Basic data types are serializable to and
from most common data representation languages (such as yaml or json)

Basic data types are:

	str (basestring in Python2, str in Python3)

	float

	int

	None

	dict

	list

The serializer decides what it can and can not serialize, and should raise
an exception when a type it can not serialize is passed.

SchematicsSerializer is the default implementation used.

	
dump(model, value)

	dump the value from a class to a basic datatype.

if the model or value is not valid, raise a SerializationException

	
load(model, value)

	load the value from a basic datatype, into a class.

if the model or value is not valid, raise a SerializationException

	
to_json_schema(model)

	return a dictionary representing a jsonschema for the model.

	
class transmute_core.object_serializers.SchematicsSerializer(builtin_models=None)

	An ObjectSerializer which allows the serialization of
basic types and schematics models.

The valid types that SchematicsSerializer supports are:

	int

	float

	bool

	decimal

	string

	none

	lists, in the form of [Type] (e.g. [str])

	any type that extends the schematics.models.Model.

	
dump(model, value)

	dump the value from a class to a basic datatype.

if the model or value is not valid, raise a SerializationException

	
load(model, value)

	load the value from a basic datatype, into a class.

if the model or value is not valid, raise a SerializationException

	
to_json_schema(model)

	return a dictionary representing a jsonschema for the model.

ContentType Serialization

	
class transmute_core.contenttype_serializers.ContentTypeSerializer

	A ContentTypeSerializer handles the conversion from
a python data structure to a bytes object representing
the content in a particular content type.

	
can_handle()

	given a content type, returns true if this serializer
can convert bodies of the given type.

	
content_type()

	return back what a list of content types
this serializer should support.

	
dump()

	should return back a bytes (or string in python 2),
representation of your object, to be used in e.g. response
bodies.

a ValueError should be returned in the case where
the object cannote be serialized.

	
load()

	given a bytes object, should return a base python data
structure that represents the object.

a ValueError should be returned in the case where
the object cannot be serialized.

	
main_type()

	return back a single content type that represents this
serializer.

	
class transmute_core.contenttype_serializers.SerializerSet(serializer_list)

	composes multiple serializers, delegating commands to one
that can handle the desired content type.

SerializerSet implements a dict-like interface. Retrieving
serializers is done by get the content type item:

serializers["application/json"]

	
keys()

	return a list of the content types this set supports.

this is not a complete list: serializers can accept more than
one content type. However, it is a good representation of the
class of content types supported.

	
class transmute_core.contenttype_serializers.JsonSerializer

	
	
static can_handle(content_type_name)

	given a content type, returns true if this serializer
can convert bodies of the given type.

	
static dump(data)

	should return back a bytes (or string in python 2),
representation of your object, to be used in e.g. response
bodies.

	
static load(raw_bytes)

	given a bytes object, should return a base python data
structure that represents the object.

	
main_type

	return back a single content type that represents this
serializer.

	
class transmute_core.contenttype_serializers.YamlSerializer

	
	
static can_handle(content_type_name)

	given a content type, returns true if this serializer
can convert bodies of the given type.

	
static dump(data)

	should return back a bytes (or string in python 2),
representation of your object, to be used in e.g. response
bodies.

	
static load(raw_bytes)

	given a bytes object, should return a base python data
structure that represents the object.

	
classmethod main_type()

	return back a single content type that represents this
serializer.

Swagger

	
class transmute_core.swagger.SwaggerSpec

	a class for aggregating and outputting swagger definitions, from
transmute primitives

	
add_func(transmute_func, transmute_context)

	add a transmute function’s swagger definition to the spec

	
add_path(path, path_item)

	for a given path, add the path items.

	
paths

	return the path section of the final swagger spec,
aggregated from the paths added.

	
swagger_definition(base_path=None, **kwargs)

	return a valid swagger spec, with the values passed.

	
transmute_core.swagger.generate_swagger_html(swagger_static_root, swagger_json_url)

	given a root directory for the swagger statics, and
a swagger json path, return back a swagger html designed
to use those values.

	
transmute_core.swagger.get_swagger_static_root()

	transmute-core includes the statics to render
a swagger page. Use this function to
return the directory containing said statics.

Shape

	
class transmute_core.response_shape.ResponseShape

	result shapes define the return format of the
response.

	
static create_body(result_dict)

	given the result dict from
transmute_func, return back the
response object.

	
static swagger(result_schema)

	given the schema of the inner
result object, return back the
swagger schema representation.

	
class transmute_core.response_shape.ResponseShapeComplex

	return back an object with the result nested,
providing a little more context on the result:

	status code

	success

	result

	
static create_body(result_dict)

	given the result dict from
transmute_func, return back the
response object.

	
static swagger(result_schema)

	given the schema of the inner
result object, return back the
swagger schema representation.

	
class transmute_core.response_shape.ResponseShapeSimple

	return back just the result object.

	
static create_body(result_dict)

	given the result dict from
transmute_func, return back the
response object.

	
static swagger(result_schema)

	given the schema of the inner
result object, return back the
swagger schema representation.

TransmuteFunction

Warning

transmute framework authors should not need to use
attributes in TransmuteFunction directly. see
creating_a_framework

	
class transmute_core.function.transmute_function.TransmuteFunction(func, args_not_from_request=None)

	TransmuteFunctions wrap a function and add metadata,
allowing transmute frameworks to extract that information for
their own use (such as web handler generation or automatic
documentation)

	
get_response_by_code(code)

	return the return type, by code

	
get_swagger_operation(context=<transmute_core.context.TransmuteContext object>)

	get the swagger_schema operation representation.

	
process_result(context, result_body, exc, content_type)

	given an result body and an exception object,
return the appropriate result object,
or raise an exception.

	
transmute_core.function.parameters.get_parameters(signature, transmute_attrs, arguments_to_ignore=None)

	given a function, categorize which arguments should be passed by
what types of parameters. The choices are:

	query parameters: passed in as query parameters in the url

	body parameters: retrieved from the request body (includes forms)

	header parameters: retrieved from the request header

	path parameters: retrieved from the uri path

The categorization is performed for an argument “arg” by:

1. examining the transmute parameters attached to the function (e.g.
func.transmute_query_parameters), and checking if “arg” is mentioned. If so,
it is added to the category.

2. If the argument is available in the path, it will be added
as a path parameter.

3. If the method of the function is GET and only GET, then “arg” will be
be added to the expected query parameters. Otherwise, “arg” will be added as
a body parameter.

Changelog

System Message: ERROR/6 (/home/docs/checkouts/readthedocs.org/user_builds/transmute-core/checkouts/latest/docs/changelog.rst, line 5)

Command 'gitchangelog show HEAD...v0.2.9' failed: [Errno 2] No such file or directory: 'gitchangelog': 'gitchangelog'

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 transmute_core	

 	
 	
 transmute_core.attributes	

 	
 	
 transmute_core.decorators	

 	
 	
 transmute_core.function.parameters	

 	
 	
 transmute_core.function.signature	

 	
 	
 transmute_core.function.transmute_function	

 	
 	
 transmute_core.response_shape	

 	
 	
 transmute_core.swagger	

Index

 A
 | C
 | D
 | G
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | Y

A

 	
 	add_func() (transmute_core.swagger.SwaggerSpec method)

 	
 	add_path() (transmute_core.swagger.SwaggerSpec method)

 	annotate() (in module transmute_core.decorators)

C

 	
 	can_handle() (transmute_core.contenttype_serializers.ContentTypeSerializer method)

 	(transmute_core.contenttype_serializers.JsonSerializer static method)

 	(transmute_core.contenttype_serializers.YamlSerializer static method)

 	content_type() (transmute_core.contenttype_serializers.ContentTypeSerializer method)

 	
 	ContentTypeSerializer (class in transmute_core.contenttype_serializers)

 	create_body() (transmute_core.response_shape.ResponseShape static method)

 	(transmute_core.response_shape.ResponseShapeComplex static method)

 	(transmute_core.response_shape.ResponseShapeSimple static method)

D

 	
 	describe() (in module transmute_core.decorators)

 	dump() (transmute_core.contenttype_serializers.ContentTypeSerializer method)

 	(transmute_core.contenttype_serializers.JsonSerializer static method)

 	(transmute_core.contenttype_serializers.YamlSerializer static method)

 	(transmute_core.object_serializers.ObjectSerializer method)

 	(transmute_core.object_serializers.SchematicsSerializer method)

G

 	
 	generate_swagger_html() (in module transmute_core.swagger)

 	get_parameters() (in module transmute_core.function.parameters)

 	
 	get_response_by_code() (transmute_core.function.transmute_function.TransmuteFunction method)

 	get_swagger_operation() (transmute_core.function.transmute_function.TransmuteFunction method)

 	get_swagger_static_root() (in module transmute_core.swagger)

J

 	
 	JsonSerializer (class in transmute_core.contenttype_serializers)

K

 	
 	keys() (transmute_core.contenttype_serializers.SerializerSet method)

L

 	
 	load() (transmute_core.contenttype_serializers.ContentTypeSerializer method)

 	(transmute_core.contenttype_serializers.JsonSerializer static method)

 	(transmute_core.contenttype_serializers.YamlSerializer static method)

 	(transmute_core.object_serializers.ObjectSerializer method)

 	(transmute_core.object_serializers.SchematicsSerializer method)

M

 	
 	main_type (transmute_core.contenttype_serializers.JsonSerializer attribute)

 	
 	main_type() (transmute_core.contenttype_serializers.ContentTypeSerializer method)

 	(transmute_core.contenttype_serializers.YamlSerializer class method)

O

 	
 	ObjectSerializer (class in transmute_core.object_serializers)

P

 	
 	paths (transmute_core.swagger.SwaggerSpec attribute)

 	
 	process_result() (transmute_core.function.transmute_function.TransmuteFunction method)

R

 	
 	ResponseShape (class in transmute_core.response_shape)

 	
 	ResponseShapeComplex (class in transmute_core.response_shape)

 	ResponseShapeSimple (class in transmute_core.response_shape)

S

 	
 	SchematicsSerializer (class in transmute_core.object_serializers)

 	SerializerSet (class in transmute_core.contenttype_serializers)

 	swagger() (transmute_core.response_shape.ResponseShape static method)

 	(transmute_core.response_shape.ResponseShapeComplex static method)

 	(transmute_core.response_shape.ResponseShapeSimple static method)

 	
 	swagger_definition() (transmute_core.swagger.SwaggerSpec method)

 	SwaggerSpec (class in transmute_core.swagger)

T

 	
 	to_json_schema() (transmute_core.object_serializers.ObjectSerializer method)

 	(transmute_core.object_serializers.SchematicsSerializer method)

 	transmute_core.attributes (module)

 	transmute_core.decorators (module)

 	transmute_core.function.parameters (module)

 	
 	transmute_core.function.signature (module)

 	transmute_core.function.transmute_function (module)

 	transmute_core.response_shape (module)

 	transmute_core.swagger (module)

 	TransmuteContext (class in transmute_core.context)

 	TransmuteFunction (class in transmute_core.function.transmute_function)

Y

 	
 	YamlSerializer (class in transmute_core.contenttype_serializers)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 What is transmute-core?

 		
 Getting Started

 		
 1. Authoring a Function To Be Transmuted

 		
 Annotating Types in Python 2

 		
 2. Annotating a Function

 		
 3. Adding Swagger Documentation to the App

 		
 4. What’s Next?

 		
 Serialization and Validation

 		
 Python Primitives

 		
 Typing Module

 		
 Attrs

 		
 Schematics

 		
 Details

 		
 Query Parameter Array Arguments as Comma-separated List

 		
 Performance

 		
 Customization

 		
 Functions and Annotations

 		
 Argument Inference

 		
 use transmute_core.describe to customize behaviour

 		
 Exceptions

 		
 Additional Examples

 		
 Optional Values

 		
 Custom Response Code

 		
 Use a single schema for the body parameter

 		
 Multiple Response Types

 		
 Headers in a Response

 		
 Frameworks Supported

 		
 aiohttp

 		
 Concise Example

 		
 flask

 		
 Gotchas to Note

 		
 Concise Example

 		
 Advanced Usage

 		
 TransmuteContext

 		
 Response

 		
 Response Shape

 		
 Creating a framework-specific library

 		
 Full framework in 100 statements or less

 		
 Overview

 		
 Simple Example

 		
 API Reference

 		
 TransmuteContext

 		
 Decorators

 		
 Object Serialization

 		
 ContentType Serialization

 		
 Swagger

 		
 Shape

 		
 TransmuteFunction

 		
 Changelog

_static/up.png

